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Abstract— Visual motion estimation is an integral and well-
studied challenge in autonomous navigation. It is significantly
more challenging in highly dynamic environments with multiple
moving objects. This paper introduces an approach to this
multimotion estimation problem capable of estimating the full
SE p3q trajectory of every motion in a scene, even when motions
become occluded. The Multimotion Visual Odometry (MVO)
pipeline employs multilabeling techniques and continuous
motion models to estimate all motions simultaneously, including
the camera egomotion. Motion closure is used to recognize
when trajectories become unoccluded, and the motion models
are used to interpolate the occluded estimates. The estimation
performance of the pipeline is demonstrated on real-world
trajectory data from the Oxford Multimotion Dataset.

I. INTRODUCTION

Safely navigating through dynamic environments is
important in robotics and consistently estimating multiple,
continuous motions from incomplete observations is integral
to this task. Visual odometry (VO) is widely used to estimate
the egomotion of a camera by isolating the static parts of a
scene. Recent work has addressed the multimotion estimation
problem by focusing on the dynamic regions of a scene
that VO rejects. A rigid-motion assumption is often used
to simplify the problem as common objects (e.g., vehicles)
tend to move rigidly, and more complex dynamic objects
(e.g., humans) can be treated as piecewise-rigid motions.

Aspects of the rigid multimotion estimation problem
have been addressed by a variety of techniques, including
factorization and model selection. Factorization techniques
use matrix decomposition to determine the motion and shape
of each dynamic object [1]. This factorization usually requires
points to be tracked for the entirety of the estimation window,
which is difficult in complex scenes due to motion blur or
lighting changes that deteriorate the quality of measurements.

Ozden et al. [2] consider many practical challenges in
multimotion estimation, such as incomplete feature tracks, and
propose a model selection framework that relies on separate
egomotion estimation. While this technique explicitly models
the merging and splitting of motions, it does not address occlu-
sions, where objects temporarily obscure each other or leave
the field of view of the sensor. Motion estimation systems
must be robust to observation dropouts as highly dynamic
scenes tend to include significant amounts of occlusion.

Tracking occluded objects in dynamic scenes is a principle
problem in multiple object tracking (MOT). A variety of
specific, appearance-based object models are used to detect
targets in each frame and techniques focus on accurately
associating present and past detections [4]. Partially occluded
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Fig. 1. Motion segmentation produced by our multimotion visual odometry
(MVO) system. The egomotion of the camera is estimated from the
static points in the scene shown in black. The other colors represent the
segmentation of the other estimated motions in the scene.

objects can be tracked using these models by inferring the
position of the entire object from the portions that are visible
[5]. The motions of fully occluded objects are often predicted
using motion models [6]. These object models are difficult
to generalize, so tracking techniques are often designed for
specific applications and employ constrained motion models.
These assumptions limit their ability to track general objects
and estimate the full SE p3q pose of each object.

Our multimotion visual odometry (MVO) pipeline [7]
addresses the multimotion estimation problem by applying
multimodel fitting techniques to the traditional VO pipeline.
MVO simultaneously estimates the full SE p3q trajectory
of every motion in a scene, including the egomotion. The
original pipeline relies on direct observations and is therefore
unable to handle significant observation dropouts.

This paper demonstrates how MVO can be extended to
estimate multiple motions through occlusion by exploiting
a physically founded motion model. A white-noise-on-
acceleration (i.e., locally constant-velocity) model is used
to extrapolate motion estimates until the object becomes
visible. These estimates are used in motion closure to recover
tracking when objects reappear in the predicted location, after
which the occluded estimates can be interpolated. The full
SE p3q trajectory of every motion in the scene is estimated
at all times, including when previously observed motions are
occluded, and performance is demonstrated on ground-truth
data from the Oxford Multimotion Dataset [3].

II. MULTIMOTION VISUAL ODOMETRY

The MVO pipeline extends VO to multimodel segmentation
and estimation. As with traditional stereo VO pipelines, a set
of tracklets is generated by matching salient image points
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Fig. 2. Trajectory estimates produced by our occlusion-aware multimotion visual odometry (MVO) system before (a), during (b), and after (c) an occlusion
in the occlusion 2 unconstrained segment of the Oxford Multimotion Dataset [3]. The trajectory estimate of the swinging block (4, magenta) is
extrapolated using the constant-velocity motion model (dashed line) when the block is occluded by the moving tower (1, cyan) in (b). When the block
becomes unoccluded in (c), it is rediscovered through motion closure and the estimates are interpolated to match the directly estimated trajectory (solid line).

across rectified stereo image pairs and temporally across
consecutive stereo frames. The motion segmentation and
estimation are then cast as a multilabeling problem where
a label represents a motion hypothesis calculated from a
group of tracklets. The labeling is found using CORAL [8],
a convex optimization approach to the multilabeling problem.

The tracklets are embedded within a geometric graph that
encodes spatial proximity over multiple frames. This graph
forms the basis of both label assignment and generation.
Labels are assigned based on the reprojection residual of the
associated trajectory, as well as a local smoothness regulariza-
tion. Disconnected subgraphs within label supports are used to
estimate new trajectories through a multiframe RANSAC pro-
cedure. Redundant and oversegmented labels are later merged.

The algorithm iterates this process until the labeling
converges. All motion hypotheses up to this point are treated
as egocentric and potentially belonging to the static portions
of the scene (i.e., the camera’s egomotion). In a final step,
a label is selected to represent the motion of the camera and
a full-batch estimation of each trajectory is performed in a
geocentric frame. The geocentric frame is chosen over an ego-
centric frame as it is more appropriate for the constant-velocity
prior. This is because two frames, each moving with constant
velocities relative to a static reference frame (e.g., the Earth),
do not move with constant velocity relative to each other.

If a previously estimated motion is not found in the
current frame, its estimate is extrapolated using the white-
noise-on-acceleration motion prior described by Anderson
et al. [9]. In practice, the prior penalizes the trajectory’s
deviation from a locally constant body-centric velocity.
The prior is physically motivated, as objects tend to move
smoothly through their environment.

We apply motion closure to determine if a recently
discovered trajectory is similar to an extrapolated motion in
both location and velocity. Trajectories belonging to the same
motion on either side of an occlusion can be linked, and the
occluded estimates can be corrected via interpolation. More
detailed explanations of MVO are available in [7] and [10].

III. DISCUSSION AND CONCLUSION

This abstract introduces how the MVO pipeline can be
extended to address the challenges posed by occlusions

in highly dynamic environments. The pipeline uses a
white-noise-on-acceleration motion model to extrapolate
occluded trajectories until they are observed again. A
motion-based similarity threshold incorporating both position
and velocity can then be used to determine if a newly
discovered motion belongs to the same occluded object.

The MVO pipeline performance was demonstrated on a
challenging segment from the Oxford Multimotion Dataset
[3] exhibiting significant occlusion and highly dynamic
SE p3q motions (Fig. 2). The system performs comparably
to similarly defined visual odometry systems used solely
for egomotion estimation while estimating all motions in
the scene. This rigid-estimation approach can be applied
to other problems, such as autonomous driving and human
tracking. The motion of vehicles, cyclists, and pedestrians
can generally be approximated as rigid or piecewise-rigid
and they often interact in complex, dynamic environments.

Current and future work focuses on applying more accu-
rate motion models, as well as extensions to other sensor
modalities, such as RGB-D and event cameras.

REFERENCES
[1] J. P. Costeira and T. Kanade, “A multibody factorization method for

independently moving objects,” IJCV, 29(3):159–179, 1998.
[2] K. E. Ozden, K. Schindler, and L. V. Gool, “Multibody structure-from-

motion in practice,” PAMI, 32(6):1134–1141, 2010.
[3] K. M. Judd and J. D. Gammell, “The Oxford multimotion dataset:

Multiple SE(3) motions with ground truth,” RA-L, 4(2):800–807, 2019.
[4] D. Reid, “An algorithm for tracking multiple targets,” TAC, 24(6):843–

854, 1979.
[5] G. Shu, A. Dehghan, O. Oreifej, E. Hand, and M. Shah, “Part-based

multiple-person tracking with partial occlusion handling,” in CVPR,
pp. 1815–1821, 2012.

[6] D. Mitzel, E. Horbert, A. Ess, and B. Leibe, “Multi-person tracking
with sparse detection and continuous segmentation,” in ECCV, pp.
397–410, 2010.

[7] K. M. Judd, J. D. Gammell, and P. Newman, “Multimotion visual
odometry (MVO): Simultaneous estimation of camera and third-party
motions,” in ICRA, pp. 3949–3956, 2018.

[8] P. Amayo, P. Piniés, L. M. Paz, and P. Newman, “Geometric Multi-
Model Fitting with a Convex Relaxation Algorithm,” in CVPR, pp.
8138–8146, 2018.

[9] S. Anderson and T. D. Barfoot, “Full STEAM ahead: Exactly sparse
Gaussian process regression for batch continuous-time trajectory
estimation on SE(3),” in ICRA, pp. 157–164, 2015.

[10] K. Judd and J. Gammell, “Occlusion-robust MVO: Multimotion estima-
tion through occlusion via motion closure,” 2019, arXiv: 1905.05121
[cs.RO].


	Introduction
	Multimotion Visual Odometry
	Discussion and Conclusion

