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I. INTRODUCTION

Our work focuses on using inverse reinforcement learning
(IRL) to produce navigation strategies where the policies
and associated rewards are learned by observing humans. In
particular, we are interested in developing intelligent agents
that can mingle with people in crowded environments. While
classic obstacle avoidance and navigation algorithms can
be adapted to satisfy the basic navigational needs of such
robots [1], [2], encoding the norms of social interaction
has proven elusive. IRL provides a natural mechanism for
learning social heuristics [3]. We present a deep IRL algo-
rithm that simultaneously yields both the expert’s underlying
reward structure and its associated optimized policy.

II. PRELIMINARIES

Let the Markov decision process (MDP) M =
{S,A, T ,R, γ} consist of a set of states S, a set of actions
A, transition dynamics T (s, a) = P (s′|s, a), rewards R :
S 7→ R, and discount factor γ ∈ [0, 1). The IRL problem as
formulated by Ng and Russel [4] is to recover an otherwise
unknown and ambiguous R from trajectories of the form
ζ = {(s0, a0), (s1, a1) . . . } sampled from a near optimal
expert policy π∗. Ziebart et al. [5] resolve the inherent
ambiguity in finding R by considering a maximum entropy
distribution for the trajectories

P (ζi|θ) = exp{
∑
s∈ζi

r(f(s),θ)} (1)

Where the mapping f : S 7→ [0, 1]
k is a state feature

vector of k elements, θ are the model parameters, and
r(f(s),θ) is the reward function. As shown in Ziebart et
al. [5], the optimal parameters can be found by maximizing
log likelihood as in (2).

θ∗ = argmax
θ

L(θ) = argmax
θ

∑
ζ∈D

logP (ζ|θ, T ) (2)

Wulfmeier et al. [6] propose a deep learning algorithm
where the reward function is a neural network whose weights
are updated using (3). This requires the MDP to be solved
within each IRL loop and the obtained policy π to be
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compared with the expert policy in order to compute the
necessary weight update gradient.

∂L

∂θ
= (µD − Eπ[µ]) ·

∂

∂δ
r(f(s),θ) (3)

Here, Eπ [µ] is the state visitation frequency (SVF) under
the policy π and µD is the SVF of expert demonstrations. The
detailed deep learning algorithm, the dynamic programming
algorithm used to obtain Eπ [µ], and the calculation of µD
are found in Wulfmeier et al.[6] and not replicated here due
to space constraints.

III. DEEP IRL SOCIAL NAVIGATION

We present a deep inverse reinforcement algorithm with a
simple feature design to replicate navigation behavior within
an synthetic environment given trajectories from an expert.
In our preliminary work we do this in a grid world, but plan
to scale up to more realistic environments in near future.
Deep reinforcement learning (RL) provides a powerful and
general mechanism that should be of sufficient generality.

A. Gridworld Environment

We model the environment as a 2D gridworld with action
set Agw = {up, right, left, down, stay}. The states are the
agent’s integer coordinates that are bounded (actions leading
out of bounds are treated as a ”stay” action), a single goal
state, as well as a variable number of obstacles states exist
in the environment.

B. Feature Representation

We craft a one-hot feature representation fgw(s) based
on both local and global information available to the agent,
summarized in Fig. 1.

1) Goal Orientation: To encode orientation and enable
reward learning based on the goal’s location, The agent’s
360◦ surrounding is split into b bins, which need not be
equally sized. In our case, b = 8 and bins aligned with
actions have a tighter angle (refer to Fig. 1).
We also consider three temporal features for moving away
or towards the goal, or staying at the same distance from
the goal which require previous state information to be
calculable.

2) Obstacle Avoidance: To learn obstacle related rewards,
we include the immediate n × m neighbourhood of the
agent’s current position in the features. This can be extended
to allow rewards to be associated with respect to distance
from obstacles. In our trials, we consider the 3 × 3 neigh-
bourhood.



(a) Goal orienting features
used in our trials. each num-
bered area represents a bin.

(b) Local obstacle features.
each numbered box is a poten-
tial obstacle location.

Fig. 1: Spacial IRL feature representations.

C. IRL Algorithm

The Algorithm used is based on Wulfmeier et al. [6]
with some key differences. Our method uses the actor-
critic RL method [7] instead of the proposed approximate
value iteration and does not assume known state transition
dynamics. Instead, we use importance sampling to get the
agent’s SVF, where the probability of a trajectory being
produced is assumed to be proportional to the reward it yields
given the current reward function as shown in (4).

P (ζk) ∝
∑
s∈ζk r(f(s))− rmin

Z
(4)

Where rmin is the minimum reward obtained in the sample
under the current reward function and Z is the partition
function approximated by accumulating rewards for each
sampled trajectory ζi as in (5).

Z ≈
∑
ζi

∑
s∈ζi

r(f(s)) (5)

The visitation counts in each of the sampled trajectories
are normalized to obtain the probability of a given state in
a given trajectory. These normalized trajectories are then
multiplied with their respective importance weights and
summed to produce the state visitation frequency of the
agent.

IV. EXPERIMENTAL DETAILS

We evaluated the extent to which our IRL methodology
could generate trajectories that would accrue as much reward
as those our training examples, based on two classes of
training data. One class was from an RL agent trained on the
target environment using hand-crafted rewards (for obstacle
avoidance and goal achievement). The second set was from
human navigation, based on a desire to stay on the left or
obstacles on the way to the goal. Our measure of success
was the based on accruing as much reward as the training
data, and also matching it’s qualitative characteristics. The
training sets sizes were 2400 and 30 samples respectively.

For both cases, we ran our IRL algorithm for 100 iterations
(convergence was common around the 40th iteration). The
inner RL loop ran for 6000 episodes to guarantee conver-
gence.

In both the cases the IRL agent was able to pick up the
underlying reward the expert was trying to maximize and
optimize for it. Fig. 2 shows that the performance of the IRL

Fig. 2: Average reward obtained by policy generated at each
IRL iteration across 50 runs and 8 seeds compared with the
reward obtained by the expert.

(a) Grid location visitation
count of an unbiased agent.

(b) Grid location visitation
count of an left-biased agent.

Fig. 3: For both plots, the agent performed 20 episodes of
20 steps each. The position of the goal and the obstacle
are marked with a green and red square respectively. The
starting position of the agent changed randomly with each
run.

agent after roughly 25 iterations is comparable to that of the
expert and Fig. 3b show a noticeable shift in trajectories of
the biased agent compared to the unbiased one in Fig. 3a.

V. CONCLUSIONS
In this work we showcased preliminary results from our

IRL-based method for learning human-like navigation behav-
ior. The simple features with a deep reinforcement learning
architecture is promising and further research will investigate
this method’s scaling to larger environments and learning
from human trajectories.
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