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INTRODUCTION

Recent advances in robotics have allowed services robots
to begin to enter domestic environments. However, their
deployment is not always perceived as useful, and their pres-
ence can be rejected by the people the robots are supposed
to help. The work of [1] points out that a critical factor of
robot acceptance is their ability to navigate around humans
in a socially compliant manner.

The problem with this is that traditional navigation meth-
ods represent the environment as a static structure, and
dynamic objects, such as humans, are treated separately.
Therefore the robots assume a reactive approach, where they
estimate people’s velocities by tracking them and then replan
their trajectory accordingly.

To overcome the limitations of reactive approaches, a
robot could learn to avoid areas likely to be congested [2],
and several authors [3], [4], [5] have proposed models to
represent the characteristic movements of people. However,
pedestrian flows are not stationary, but, as shown in [6],
[5], they change over time. A robot, capable of predicting
future distributions of pedestrian flows, would be able to plan
a congestion-free, socially-compliant trajectory in advance,
minimising the likelihood of having to alter its route in order
to avoid collisions.

We present a method capable of learning the natural flows
of people and how they change over time. The core idea of
the method is to model the time domain by several dimen-
sions wrapped into themselves, which can efficiently repre-
sent the periodicities of the pedestrian flow characteristics.
Using a real-world dataset of several weeks, we compare the
method’s performance to state-of-the-art algorithms [5], [7],
[4] for pedestrian flow modelling. To promote reproducible
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Fig. 1. Directions of pedestrian movement at 9:15 and 16:30 predicted
by the proposed model. The arrow lengths correspond to flow intensity, i.e.
number of people walking in the directions indicated by the arrows. See a
video at https://youtu.be/ANbEODdFnR8.

and unbiased comparisons, the dataset, code and supporting
materials have been made publicly available [8], and the
methods were applied to the dataset by their authors.

METHOD

The aim of the proposed method is to find an estimation
of the probabilistic distribution of an occurrence of a spatio-
direction-temporal event for a given time, position, speed
and angle. We assume that the distribution of the events is
influenced by a set of cyclostationary processes influenced by
people habits. Thus, in accordance of our previous works [9],
[10], [11], [12], we proposed to use a “warped-hypertime”
projection of the timeline into a constrained subset of mul-
tidimensional vector space with topology derived from the
periodicities identified in the training data. This space al-
lows to model distributions of quasi-periodic spatio-temporal
events using the Expectation Maximisation algorithm for
estimating Gaussian Mixture Models (EM GMM). The idea
behind the aforementioned projection is that events which
occur with similar periodicity will form clusters in the
hypertime space even if they are isolated in the (linear)
temporal domain. An intuitive example, shown in Figure 2,
demonstrates how the “warped-hypertime” projection allows
to represent cyclostationary probabilistic distribution.

A. Warped Hypertime Projection

Let us assume that the pedestrian tracking system on the
robot provides us with a vector indicating detected people’s
positions, velocities and orientations as well as the timestamp
of the observation. We apply the spectral decomposition
method derived from the Frequency Map Enhancement [13],
identify the most prominent temporal periodicities in the
provided data, and determine the parameters for the warped
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Fig. 2. Example of the warped hypertime projection for one periodicity
T and one dimensional data xi. The numbers xi observed at ti are projected
into a 3d vector space as (xi,cos(2π ti/T ),sin(2π ti/T )), (step A) where they
form clusters because they exhibit a periodic behaviour with a period T (step
B). Distribution of the clusters allows to model the probabilitic distribution
of the x in the hypertime space (step C) as well as in the original domain
(step D). In the warped hypertime, time dimensions define the base of a
cylinder, and values of xi define the side of the cylinder. Courtesy of [12].

hypertime projection. Then, we project every measurement
into a new constrained subset of multidimensional vector
space, as described in [9].

B. Model of the probability distribution

We assume that the time-dependent occurrences of events
projected into the warped hypertime space are distributed
in a way which allows us to model their distribution by
Gaussian mixtures. Since in this particular case, we model
the probabilities of people movement directions by Bernoulli
distribution, we split the dataset into occurrences and non-
occurrences (that are mutually exclusive), and we estimate
the parameters of the ditribution of each of these phenomena
separately using an Expectation Maximisation algorithm
(EM GMM). To estimate the probability of the Bernoulli dis-
tribution of occurrences at one specific point, we compare the
probability of occurrence to probability of non-occurrence
derived from these two distributions [14].

C. Experiment

The approach described was evaluated using a temporally
expansive dataset, covering 9 separate ∼10-hour sessions
starting before the usual working hours over four weeks. This
covered approximately 30000 detections of people walking,
and 70000 non-detections.

On this dataset, and with the aid of the co-authors of
several of the alternative methods [5], [7], [4], we evaluated
and compared our method. We found during our experiments
that we achieved a significantly lower Mean Squared Error
compared to the other state-of-the-art methods and that

memory-wise, our model was being magnitude(s) smaller,
making it suitable for representation of large environments.

CONCLUSION

The important advantage of the techinique presented is
that as it can predict the future directions, intensities and
speeds of the pedestrian flows. It doesn’t need to base its
predictions on recent observations, and therefore the robot
can plan its collision-free trajectory through a given location
before it arrives there, minimising the risk of breaking natural
flows of pedestrians. This will allow the robot to naturally
merge into the predicted flows, and thereby behave in a more
socially acceptable way.

In the experiments, we showed significant improvement in
predicting the probability of occurrences over the other meth-
ods. However the STeF [5] and CLiFF [4] methods showed
better prediction at estimating the conditional probability of
flow directions.

In the future work, we will evaluate the impact of com-
pared methods to the robot’s ability to predict the collision-
free trajectories in a real world scenario.
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