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Abstract— We present a model that captures the long-term
motion directions of dynamic objects, such as pedestrians. We
approach this problem by modelling movement directions of
a typical object in an environment over time. At a given
coordinate in space and time, our method provides a multi-
modal probability density function over the possible directions
an object can move in. The model is continuous in the
spatial and temporal domains, as we can query the change
of directional uncertainty at arbitrary resolution in space and
time.

I. INTRODUCTION

Autonomous robots may need to operate in urban envi-
ronments with moving objects, such as crowds of people.
The understanding of movement directions can shed light
on representing the trajectories of these dynamic objects
in the environment. This work addresses the problem of
understanding trajectories of dynamic objects by building a
directional probabilistic model that is continuous over time
and space.

The method provided in our work is aimed at learning
the long-term dynamics in an environment. There have been
attempts [1], [2] to extend occupancy mapping beyond static
environments by storing occupancy signals over time, and
building a representation along time in each grid. Instead of
modelling a changing occupancy map over time, methods [3]
have also been developed to understand long-term occupancy
by that capture movement directions in the environment.

Our method builds a model with the following desirable
properties:

1) models the probability distribution of movement di-
rections over a valid support of [−π, π), and the
distribution can be multi-modal;

2) represents the environment in a continuous manner,
without assuming the discretisation of the environment
into a grid of fixed resolution, with independent cells;

3) takes into account how the probability distribution of
directions changes over time.

II. METHOD

A. Problem Formulation

We consider a dataset of D = {(xm, ym, tm, θm)}Mm=1.
xm and ym denote the longitude and latitude of the data
point in space, tm denotes the time step at which the
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Fig. 1: Overview of our model

mth observation was made, and θm ∈ [−π, π) denotes the
angular direction of a trajectory at this point. Given specific
coordinates in space and time: (x∗, y∗, t∗), we want the
model to give us the probability distribution of the angular
directions p(θ|x∗, y∗, t∗).

B. Overview of Proposed Model

A brief overview of our model is given in this subsection.
Fig. 1 summarises the main architecture of our model. Given
input data, we calculate high dimensional kernel features.
The features are then treated as a sequence, and passed
through a LSTM network. The hidden representation of the
LSTM network is inputted to a mixture density network
(MDN) to capture a multi-modal distribution. .

C. Generating High Dimensional Features Over Space

In this work, we approximate a full kernel matrix between
each data point by projecting it to a set of pseudo-input
points, similar to the sparse Gaussian Process method [4].
We start by defining a set of Ms pseudo-input points over
space, denoted by x̄1 . . . x̄Ms

. x ∈ R2 and x̄ ∈ R2, both x
and x̄ contain longitudinal and latitudinal information. We
generate high dimensional feature vectors from inputs by
evaluating a kernel function, k(x, x̄), between the input and
each pseudo-input point.

The Radial Basis Function (RBF) kernel [5] is chosen to
generate features in space. This kernel function is defined
as k(x, x̄) = exp

(
−‖x−x̄‖
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)
, where ` is the length scale

hyperparameter of the kernel. Our kernel feature influences
the neighbouring areas of training examples, resulting in the
building of a continuous map.

D. From Spatial to Spatiotemporal

There are two steps to extend our model to spatiotemporal:
1) Generate high dimensional features in the space and

time domains;
2) Pass the spatiotemporal features along the time domain

into a LSTM network to learn a more compact repre-
sentation of temporal variations

A natural way to build spatiotemporal kernels, described
by [6], is to multiply a spatial kernel with a temporal one.



Single Directional Multi Directional
Uni-modal GM [3] 1.5 0.86
Multi-modal GM [3] 1.54 1.17
Continuous Map 1.69 1.44

TABLE I: The average likelihood values evaluated on benchmark
datasets [3], using discrete methods from [3] and our continuous
method

Similar to our method for spatial mapping, we assume Mt

pseudo-input points in time, t̄1, . . . , t̄Mt . Our spatiotemporal
kernel function is given by

k
(
(x, t), (x̄, t̄)

)
= ks(x, x̄)︸ ︷︷ ︸

Spatial

kt(t, t̄)︸ ︷︷ ︸
Temporal

, (1)

where x and t represent a coordinate in space and time, and x̄
and t̄ are pseudo-input points in space and time respectively.
In this work, we also use the RBF as the kernel function in
time. We subsequently input the spatiotemporal features into
a LSTM network [7]. The LSTM is able to learn a compact
hidden representation for the spatiotemporal kernel features,
which is a vector of the dimensionality of the specified output
of the LSTM. A mixture density network is subsequently
trained on the hidden representation of the LSTM.

E. Mixture Density Networks

We model the output of our model as a probability
distribution of movement directions, with each mode in this
distribution indicating a probable trajectory direction. We can
achieve such outputs using mixture density networks (MDN)
[8].

In a MDN, the probability density of the target distribution
is represented as a convex combination of R individual
probability density functions. We assume that the probability
density function of angular directions of trajectories can be
approximated by a mixture of von Mises distributions [9].

The loss function of the MDN is the average negative
log-likelihood (ANLL) over all the training examples. We
can then write the loss function as:

L = − 1

N

N∑
n=1

log

( R∑
r=1

αrVM(θn|µm, κm)

)
. (2)

III. EXPERIMENTAL RESULTS

We empirically demonstrate that the continuous nature
of our model, provided by the kernel features, can cap-
ture changes in movement direction distribution space, as
compared to a method that discretises the environment into
independent cells, such as the methods presented in [3]. The
average likelihood of the test examples using benchmark
datasets used in experiments in [3] are presented in Table
I. We also ran experiments to show the effect of temporal
changes. Using the Benchmark Edinburgh Dataset [10],
the directional distributions predicted at different times and
different points in time are displayed Figure 2. We see that
our model can capture the change of these distributions over
time.

Fig. 2: The top figure shows trajectories people take. We attempt
to model how the directional distribution change over time in
two different locations marked as 1, 2. The predicted probability
distributions over four time steps at the two locations is shown in
the bottom image. The probability distributions are shown as polar
plots, with the angular axis indicating the direction in degrees, and
the radial axis specifying the probability density.

IV. CONCLUSION

By effectively exploiting the power of kernels and LSTMs
to learn spatial and temporal patterns, we present a novel
spatiotemporal model to learn the distribution of directions of
moving objects. The proposed method is continuous in both
space and time, and can capture the long-term dynamics in an
environment. Future work shall look into exploiting periodic
patterns in the directional distributions.
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