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Abstract— As robot autonomy improves, robots are increas-
ingly being considered in the role of autonomous observation
systems — free-flying cameras capable of actively tracking
human activity within some predefined area of interest. In
this work, we formulate the autonomous observation problem
through multi-objective optimization, presenting a novel Semi-
MDP formulation of the autonomous observation problem
that maximizes observation rewards while accounting for both
human- and robot-centric costs. We demonstrate how the
problem can be solved for a known human trajectory using
Constrained MDPs, and extend the approach to incorporate
human motion prediction based on noisy rationality models,
defined over a set of goals extracted from a task schedule.

I. INTRODUCTION

Human operations in extreme and remote environments,
such as space and deep water domains, have the poten-
tial to benefit from robots with autonomous observation
capabilities. Due to their high-cost and high-risk nature,
human activities in such domains are often video recorded
for documentation and later analysis. NASA, for example,
collects video documentation of each experiment conducted
on the International Space Station (ISS). As robot auton-
omy improves, robots are increasingly being considered in
the role of autonomous observation systems — free-flying
cameras capable of actively tracking human activity within
a predefined area of interest. Example systems include the
free-flying NASA Astrobee [1] and European Space Agency
CIMON [2], as well as autonomous camera robots being
considered for underwater exploration [3].

While existing robot hardware offers capable candidates
for autonomous observation systems, the autonomous ob-
servation problem itself is complex and largely unsolved.
Autonomous observation of humans moving in 3D space is
challenging due to the proliferation of viewpoints required
to cover unconstrained humans in 6-DOF environments.
Further, the robot should act as a passive observer, causing
minimal distraction to the human subject from both collisions
and visual and auditory disturbance.

In this work, we formulate the autonomous observa-
tion problem through multi-objective optimization [4]. We
present a novel Semi-MDP formulation of the autonomous
human observation problem that maximizes observation re-
wards while accounting for both human- and robot-centric
costs, solvable with Constrained Markov Decision Processes
(CMDPs) [5]. We validate our approach on activity tracking
using a simulated model of the Astrobee robot operating
within a simulated ISS environment developed by NASA
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Fig. 1: The Astrobee platform in a module of the ISS,
simulated in Gazebo and visualized in rviz.

(Figure 1). Additionally, we propose an extension to our
approach by solving the problem formulation over a set of
trajectories sampled from noisy rationality models designed
to predict goal-based human motion [6], where our goal-
based models are informed by a given task schedule.

II. PROBLEM FORMULATION

We define the autonomous observation problem as a Semi-
Markov Decision Process (SMDP) [7] with the compo-
nents (S,A(s), p(s′|s, a), p(τ |s, a, s′), r(s, a, s′, τ)), defined
as follows:
• s(t) ∈ S is a state consisting of the robot state and the

human subject’s pose [xr, xh]. We assume the robot is at
one of a set of waypoints xr.pose ∈ [w0, w1, . . . , wn],
and that the human’s trajectory xh(t) is known (we relax
this assumption in Section IV).

• A(s) is the set of actions available to the robot
at the current state, which must include the subset
{hold pos()} ∪ {move(wi)|wi ∈ [w0, w1, . . . , wn]}.

• p(s′|s, a), the state transition function, is the probability
that executing action a in state s will result in state s′.

• p(τ |s, a, s′), the time duration distribution function, is
the probability that transitioning from state s to state s′

with action a will take the duration τ .
• r(s, a, s′, τ) is the reward function. We model this as

an observation reward rate received over the period τ ,
i.e. r(s, a, s′, τ) = r(s, a, s′)τ .

We define the observation reward based on subject cov-
erage and resolution (a function of distance). We calculate
the reward as the percentage of a region-of-interest (ROI)
covered by the robot’s field of view Vr, scaled by the distance
from the robot to the ROI center.

r(s, a, s′) =
1

||ROIc − xr.pose||
||Vr

⋂
ROI||

||ROI||
(1)

The ROI can be defined as a human-centric task workspace
(e.g. the blue region in Figure 1), the subject’s full bounding
box, or whatever area the robot’s camera should capture.



Additionally, we introduce a set of cost functions
ci(s, a, s

′, τ) to model human- and robot-centric costs. As
with the reward function, we accumulate costs over a time
duration. The costs are as follows:
• c0(s, a, s

′) represents collision between the robot and
the human, calculated based on the distance from the
robot to the human’s workspace1, shown in red in Figure
1. The platform-specific parameter α0 controls how
close to the workspace edge the robot can be.

c0(s, a, s
′) = e−α0dst(xr.pose,wkspc) (2)

• c1(s, a, s
′) represents the intrusiveness, calculated based

on distance from the robot to the human’s head1. Note
that this is in direct conflict with the observation reward.
The platform-specific parameter α1 controls the rate at
which distance decreases the robot’s intrusiveness.

c1(s, a, s
′) = e−α1||xr.pose−xh head|| (3)

• c2(s, a, s
′) represents the platform-specific power con-

sumption of each of the robot’s actions.

III. PLANNING METHOD

As we are solving for total accumulated reward over a
fixed trajectory, we solve the SMDP over a finite horizon
with undiscounted rewards. We begin by defining reward and
cost functions calculated for only a state and action by taking
expectations over resulting states and action durations:

r(s, a) =
∑
s′

[
p(s′|s, a)

∑
τ

p(τ |s, a, s′)r(s, a, s′)τ

]
(4)

ci(s, a) =
∑
s′

[
p(s′|s, a)

∑
τ

p(τ |s, a, s′)ci(s, a, s′)τ

]
. (5)

Next, we frame the problem as a CMDP, represented by
the tuple (S, s0, A(s), p(s

′|s, a), r(s, a), c(s, a),d), where
ci(s, a) ∈ c is a cost function (i.e. Equation 5), and di ∈ d
is a constraint value associated with ci. The goal of a CMDP
is to maximize the expected total reward subject to a set of
constraints defined by the expected total costs:

max
π

uπr (s0) = Eπ

[
N∑
t=0

r(st, at)|s0

]

s.t. uπc (s0) = Eπ

[
N∑
t=0

ck(st, at)|s0

]
≤ dk ∀k.

(6)

We solve the CMDP by reformulating the above problem as
a linear program (see [5] for details).

IV. HUMAN MOTION PREDICTION

Rather than solve the autonomous observation CMDP for a
single human trajectory, we can leverage human motion pre-
diction to consider a set of likely human trajectories. Specif-
ically, we base our approach on Fisac et al.’s confidence-
aware human motion prediction [6]. We define the human

1Taken together, the costs c0 and c1 account for human proxemics.

state xH as a 6-DOF pose xH = [pH , ṗH ], and the human’s
actions as a 6-DOF acceleration uH = [p̈H ], with transition
dynamics defined as xt+1

H = f(xtH , u
t
H). For a given task

that the robot is observing, we define the human’s current
goal g ∈ {xg0, xg1, . . .} as a pose from the set of goal poses
defined by a task schedule (e.g. for an equipment transfer
task, goals would include poses for the equipment pick-up
and drop-off locations). We can then determine a human
motion distribution as follows:
P (xt+1

H |x
t
H , β, g) =∑
ut
H

1{xt+1
H = fH(xtH , u

t
H)}P (utH |xtH , β, g), (7)

where P (utH |xtH , β, g) is a noisy rationality model with
model confidence β. Further, the robot can update its joint
111belief in the model confidence and the human’s current
goal bt(β, g) with online observations, as explained in [6].

We incorporate motion prediction into the autonomous
observation problem by sampling a set of N human tra-
jectories xh from Equation 7, over which we calculate
expected rewards and costs r̃(st, at) = 1

N

∑
xh
r(st(xh), at)

and c̃k(st, at) = 1
N

∑
xh
ck(st(xh), at). We then substi-

tute r̃(st, at) and c̃k(st, at) for r(st, at) and ck(st, at) in
Equation 6, and solve for an optimal policy over the set of
trajectories.

V. RESULTS AND FUTURE WORK

To date, we have implemented the autonomous observation
problem in a case study using NASA’s Astrobee robot to ob-
serve humans in a simulation of the ISS. We include a video2

showing visualizations of the robot’s policy under different
constraint specifications for an inspection task with a known
human trajectory. Our current work involves implementing
the human motion prediction component, with the goal of
testing the system in a more realistic use case observing real
humans.
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