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Abstract— This paper proposes a technique for predicting
future occupancy levels. Due to the complexity of most real-
world environments, such as urban streets or crowded areas,
the efficient and robust incorporation of temporal dependencies
into otherwise static occupancy models remains a challenge. We
propose a method to capture the spatial uncertainty of moving
objects and incorporate this information into a continuous
occupancy map represented in a rich high-dimensional feature
space. Experiments performed using LIDAR data verified the
real-time performance of the algorithm.

I. INTRODUCTION

Occupancy maps which discern free areas of the environ-
ment (safe for traversal) from occupied areas (would result
in a collision) are commonly used in autonomous vehicles.
Straightforward approaches to static occupancy mapping
rely on a grid-based non-overlapping discretization of the
environment [1]. Because grid cells are updated individu-
ally without considering the relationship among cells, this
discretization process completely discards spatiotemporal
dependencies. Furthermore, this representation quickly be-
comes infeasible for larger datasets, especially when dealing
with volumetric data. The Hilbert Mapping (HM) framework
[2], [3] is an alternative to grid maps and can produce a
continuous representation of occupancy states in a much
lower computational cost.

Occupancy mapping in dynamic environments can be
categorized into three classes: 1) building static occupancy
maps in the presence of dynamic objects by considering
moving objects as spurious data [4], [5], 2) mapping the
long-term dynamics of the environment [6], [7], and 3)
mapping the short-term dynamics of the environment. This
paper focuses on the third category. Short-term dynamics are
important not only for understanding instantaneous changes
in the environment, but also using this information to make
predictions into the future.

Considering the limitations of previous attempts — dy-
namic Gaussian processes (DGP) [8] and spatiotemporal
Hilbert maps (STHMs) [9] — to predict future occupancy, we
propose a novel methodology for spatiotemporal modeling.
As illustrated in Fig. 1, the area of future uncertainty around
the moving vehicle is much larger due to the inherent
unpredictability of future states.
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(a) Dataset at t = 0 (b) Future occupancy prediction

Fig. 1: (a) Data-frame captured by a LiDAR (blue: laser beams
and red: laser hit points). The vehicle inside the rectangle moves
from left to right (b) The current and future (8 seconds) occupancy
maps produced by the Dynamic Hilbert maps (DHM) algorithm.
Indicating the uncertainty of future predictions, the occupancy
probability (red indicates highly probable) of the position of the
vehicle and its surrounding is relatively low. The future prediction is
represented as a spatial distribution peaked at one point which drops
down radially, making such a map ideal for safer path planning.

II. METHOD

Following [10], we define a collection of hinged locations
X̃ that act as centers for anchoring kernels. With analogous
to a multivariate Gaussian shape, these hinged locations have
a center µ ∈ R3 alongside another matrix Σ ∈ R3×3 to de-
note how far the measurements affect in each direction . With
the M hinged locations X̃ = {x̃m}Mm=1 = {(µm,Σm)}Mm=1,
the occupancy probability of any point in the environment
x∗ ∈ R3 can be computed using a logistic model,

p(y∗ = 1|x∗,w, X̃ ) =
(
1 + exp

(
−w>Φ(x∗)

) )−1
, (1)

with a feature vector defined as:

Φ(x∗, X̃ ) = [k(x∗, x̃1) , k(x∗, x̃2) , . . . , k(x∗, x̃M )] , (2)

k(x∗, x̃m) = exp

(
−1

2
(x∗ − µm)>Σ−1m (x∗ − µm)

)
. (3)

Refer https://github.com/RansML/Bayesian_
Hilbert_Maps/blob/master/BHM_tutorial.
ipynb for an intuitive explanation. The parameters w in
(1) are learned by maximizing the regularized log-likelihood
using stochastic gradient descent (SGD) with hit-free points
x collected from a LIDAR.

Our objective is to build short-term occupancy maps and
make short-term predictions into the future. To accomplish
this, three different Hilbert maps are maintained: Hp, repre-
senting the previous timestep; Hc, representing the current
timestep; and Ha, representing the accumulated model that
is iteratively constructed as more data is collected. With this,
we take the following four steps for each new LIDAR scan.

1. Object segmentation: In order to maintain memory
and speed efficiency, we firstly cluster the pointcloud using
the Quick-Means algorithm and discard the pointcloud. We
obtain P objects Ot = {Op

t }Pp=1.
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Fig. 2: Example of motion calculation. (a) extracted clusters
(including covariance ellipses and object boundaries). (b) Example
of how location uncertainty is propagated into mapping. At t the
object pointcloud (black dots) is used to generate the cluster set X̃
(blue ellipses), and the object location uncertainty P (black ellipse)
is propagated to the covariance Σ of these clusters (red ellipses).
At t+1, given the transformation, its location can be estimated and
used to determine new cluster positions and covariances.

2. Motion calculation: The motion between Ot and Ot+1

is then computed using the sparse Iterative Closest Point
(ICP) algorithm. This results in an orthogonal transformation
R and a translation vector t in SO(3 ).

3. Dynamic object model: With µ defining the location and
θ defining the orientation, we define a 6-dimensional state
vector xp

t = {µ, θ, µ̇, θ̇} for each object Op
t , alongside its 6×

6 covariance matrix Pp
t (initialized to zero). This state vector,

alongside R and t, is then used for updating a Kalman filter.
This dynamic model allows us to: 1) estimate object position
in future (or past) timesteps; 2) incorporate new observations
to improve predictions; and 3) account for sensor and model
uncertainties.

4. Feature vector update: With new updates, µt+1 = µt+
t, Σt+1 = RtΣtR

>
t , and a contribution parameter ωt+1 that

depends on the cluster covariance, we can now compute the
feature vector (2) and learn new weights w to represent Ha.

Under the DHM framework, it is possible to query the
occupancy p(y∗ = 1|x∗, t∗,w,Hp,Ha,Dt) anywhere in the
space x∗ at anytime t∗ (past, present, and future). Fig. 3
shows an example of the proposed framework, as introduced
in this section.

(a) t = 0 (b) t∗ = 0 (c) t∗ = 18 (d) t∗ = 42

Fig. 3: Example of the proposed DHM framework on simulated 2D
data. (a) LiDAR (blue) observing a dynamic environment with two
moving vehicles (direction in arrows) and obstacles (red). (b)-(d)
Future predictions. The top row shows different Hc, generated from
current sensor data, while the bottom row shows the corresponding
Ha, generated by incremental propagation between time-steps.
(b) indicates Ha is robust against occlusions, projecting motion
into areas outside the field of view. Because of the parameter
accumulation process, vehicle 1 in (c) of Ha has correctly mapped
both sides of the vehicle.

III. EXPERIMENTS

We conducted experiments with toy datasets and the
KITTI Vision Benchmark Suite. As shown in Table I and
Fig. 4, DHM not only outperforms other methods, but also
capable of making future predictions in 3D.

TABLE I: Occupancy prediction comparision (F-Measure)

Time step Dataset 1 (2D) Dataset 2 (3D)
HM DGP STHM DHM HM DHM

t∗ = 0 0.824 0.788 0.839 0.844 0.843 0.837
t∗ = 1 0.707 0.752 0.784 0.826 0.727 0.804
t∗ = 3 0.581 0.678 0.691 0.803 0.529 0.742
t∗ = 5 0.418 0.571 0.653 0.756 0.472 0.718
t∗ = 10 0.139 0.419 0.524 0.663 0.189 0.625

(a) t∗ = 0 s (b) t∗ = 45 s

Fig. 4: 3D occupancy prediction using DHM. The black circle
indicates maximum sensor range (40 m, centered at (0, 0, 0)), and
blue lines indicate object centroid motion over time. Video and
code: https://bitbucket.org/vguizilini/cvpp.

Runtime: All computations were performed on a i7/2.60×8
GHz notebook, with multi-threading enabled wherever possi-
ble. DHM updates between timesteps require roughly 70 ms
and 120 ms in 2D and 3D datasets, respectively, which makes
it applicable to online tasks under real-time constraints.

REFERENCES

[1] A. Elfes, “Occupancy grids: A probabilistic framework for robot
perception and navigation,” Ph.D. dissertation, Carnegie Mellon Uni-
versity, Pittsburgh PA, USA, 1989.

[2] F. Ramos and L. Ott, “Hilbert maps: Scalable continuous occupancy
mapping with stochastic gradient descent,” in Proceedings of Robotics:
Science and Systems (RSS), 2015.

[3] K. Doherty, J. Wang, and B. Englot, “Probabilistic map fusion for fast,
incremental occupancy mapping with 3d hilbert maps,” in Robotics
and Automation (ICRA), 2016 IEEE International Conference on.
IEEE, 2016, pp. 1011–1018.

[4] D. Meyer-Delius, M. Beinhofer, and W. Burgard, “Occupancy Grid
Models for Robot Mapping in Changing Environments,” in AAAI
Conference on Artificial Intelligence (AAAI), 2012.

[5] D. Nuss, R. Stephan, M. Thom, T. Yuan, K. Gunther, M. Michael,
G. Axel, and K. Dietmayer, “A random finite set approach for dynamic
occupancy grid maps with real-time application,” in arXiv preprint
arXiv:1605.02406, 2016.

[6] T. Krajnık, P. Fentanes, G. Cielniak, C. Dondrup, and T. Duckett,
“Spectral analysis for long-term robotic mapping,” in IEEE Inter-
national Conference on Robotics and Automation (ICRA), 2014, pp.
3706–3711.

[7] R. Senanayake, S. O’Callaghan, and F. Ramos, “Learning highly
dynamic environments with stochastic variational inference,” in IEEE
International Conference on Robotics and Automation (ICRA), 2017.

[8] S. O’Callaghan and F. Ramos, “Gaussian process occupancy maps for
dynamic environments,” in Experimental Robotics. Springer Tracts
in Advanced Robotics, 2015, vol. 109, pp. 791–805.

[9] R. Senanayake, L. Ott, S. O’Callaghan, and F. Ramos, “Spatio-
temporal Hilbert maps for continuous occupancy representation in
dynamic environments,” in Advances in Neural Information Processing
Systems (NIPS), 2016.

[10] V. Guizilini and F. Ramos, “Large-scale 3d scene reconstruction with
Hilbert maps,” in Proceedings of the IEEE International Conference
on Intelligent Robots and Systems (IROS), 2016.

https://bitbucket.org/vguizilini/cvpp

	INTRODUCTION
	Method
	Experiments
	References

