2019

Simila

Assistant Professor at EPFL (since Sept'17) Director of the VITA lab Research Scientist at Stanford University (before Sept'17) Co-founded startups & collaborate w/ industry leaders

Thank our sponsors

HONDA The Power of Dreams

SAMSUNG Schindler Richemont HITACHI

From *in vitro* To *in vivo*

5

Al in vivo

Intelligent Agents

Save thousands of lives every year

Release driving task / delivery task

Assist / Guide / Help

Intelligent Spaces

Save energy / cost

Reduce maintenance cost

Increase productivity / comfort / Safety

Prof. Alex Alahi – VITA lab – EPFL ⁶

"AI = any device that <u>perceives</u> its environment and takes <u>actions</u> that maximize its chance of <u>successfully</u> achieving its goals"

Exciting existing results

Yet...

Tips on how to drive in Paris...

Al must understand social etiquettes

"Under no circumstances should you use your indicator to show people what your intentions are"

We have ...

Security guard robot ends it all by throwing itself into a watery grave

Knightscope K5 security bot shows your job is probably safe from automation. For now. SEBASTIAN ANTHONY - 7/18/2017, 2:58 PM

Robots must predict social/ethical interactions to co-exist & gain society's trust

Socially-aware AI = Perception + Social Intelligence

Social Intelligence = "... the capacity to effectively navigate & negotiate complex social relationships" [1]

Perceiving

- Detection: Yolo v3 [1], RetinaNet [2]...
- Segmentation: Mask RCNN [3] ...

[1] J. Redmon & A. Faradi, Yolov3: An incremental improvement, arxiv '18
[2] T.-Y Lin et al., Focal loss for dense object detection, ICCV'17
[3] K. He et al., Mask R-CNN, ICCV'17

Perceiving Social cues

How can we learn a representation that jointly solves perception tasks given limited labels?

Unified framework e.g., Human Pose [1]

[1] S. Kreiss et al., Composite Fields for Human Pose Estimation, CVPR'19

Self-Driving Car

- People occluding people
- Small instance size in wide field of view

S. Kreiss, L. Bertoni, A. Alahi, Composite Fields for Human Pose Estimation, CVPR'19

Problem Statement

Jointly reason and predict the future trajectories of all the agents in a scene conditioned on the observed trajectories.

Input:
$$X = X_1, X_2, ..., X_n$$

Target: $Y = Y_1, Y_2, ..., Y_n$
Output: $\hat{Y} = \hat{Y}_1, \hat{Y}_2, ..., \hat{Y}_n$
 $X_i = \{(x_t^i, y_t^i), 1 \le t \le T_{obs}\}$
 $Y_i = \{(x_t^i, y_t^i), T_{obs} + 1 \le t \le T_{pred}, X_i^t = (x_t^i, y_t^i), T_{obs} + 1 \le t \le T_{pred}, X_i^t = (x_t^i, y_t^i)$

Challenges

- 1. Presence of Social Interactions
- 2. Socially Acceptable Trajectories
- 3. Multimodality

Predicting

Previous works

Hand-crafted methods

e.g., Social Forces Model [1,2,3]

 $F = F^{\text{attractive}} + F^{\text{repulsive}} \dots$

Model Social sensitivity (reckless...) [3] Fail to model:

- long-term dependencies
- Broad set of social interactions

[1] Helbing *et al.*, Physical review '95, [2] Leal-Taixé *et al.*, SVAC'13[3] A. Robicquet et al., ECCV'18

Predicting

Previous works

Hand-crafted methods

e.g., Social Forces Model [1,2,3]

 $F = F^{\text{attractive}} + F^{\text{repulsive}}$.

Model Social sensitivity Fail to model:

- long-term dependencies
- Broad set of social interactions

[1] Helbing *et al.*, Physical review '95, [2] Leal-Taixé *et al.*, SVAC'13[3] A. Robicquet et al., ECCV'18

Proposed work

DATA DRIVEN

Recurrent Neural Network (RNN)

- Store dependencies in their hidden state
- Capacity to learn diverse behaviors

Forecasting human trajectories With Recurrent Neural Network (RNN)

RNN "as is" will fail to model social interactions

27

Forecasting human trajectories

A. Alahi et al., CVPR'16

Forecasting human trajectories

RNN "as is"

A. Alahi et al., CVPR'16

Quantitative results

Average displacement error*

[1] Yamaguchi & Berg, CVPR'11

[2] Graves, '14

[3] Lerner & Lischinski, wiley '07

* On UCY [3] dataset

A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, S. Savarese, CVPR'16

[°]Discrepancy in Published Results*

Published papers report up to 87% discrepancy for the ADE (figure a) and 99% for the FDE (figure b) for simple Vanilla LSTM results!

The results in both metrics are somewhat contradictory: eg. High ADE but smaller FDE for ETH.

Reasons.

- 1. Indexing of Trajectories is different
- 2. Preprocessing of trajectories is *non-uniform* across methods.
- 3. Defined categorization of trajectories into linear and non-linear is missing.
- 4. Absence of a good Train-Test Split

Solutions!

- 1. Defined Indexing of Trajectories
- 2. Defined Preprocessing
- 3. Defined categorization of trajectories into linear and non-linear.
- 4. Carefully designed Train-Test Split

We propose TrajNet++

 Trajnet++ : Carefully indexed real-world trajectories involving social interactions. Trajectories are divided into 4 types for fair evaluation. Static (Type I), Linear (Type II), Socially Interacting (Type III), Others (Type IV).

 Synthetic Data : Clean trajectories affected only by neighbourhood interactions. Ideal sanity checks to evaluate the performance of different components.

Email me alexandre.alahi@epfl.ch

- Black line is the ground truth trajectory
- Gray line is the past
- Heatmap is the predicted distribution of our method

- Black line is the ground truth trajectory
- Gray line is the past
- Heatmap is the predicted distribution of our method

- Black line is the ground truth trajectory
- Gray line is the past
- Heatmap is the predicted distribution of our method

- Black line is the ground truth trajectory
- Gray line is the past
- Heatmap is the predicted distribution of our method

Our method learned to turn around a group

- Black line is the ground truth trajectory
- Gray line is the past
- Heatmap is the predicted distribution of our method

Our method learned to turn around a group

- Black line is the ground truth trajectory
- Gray line is the past
- Heatmap is the predicted distribution of our method

- Black line is the ground truth trajectory
- Gray line is the past
- Heatmap is the predicted distribution of our method

- Black line is the ground truth trajectory
- Gray line is the past
- Heatmap is the predicted distribution of our method

- Black line is the ground truth trajectory
- Gray line is the past
- Heatmap is the predicted distribution of our method

- Black line is the ground truth trajectory
- Gray line is the past
- Heatmap is the predicted distribution of our method

- Black line is the ground truth trajectory
- Gray line is the past
- Heatmap is the predicted distribution of our method

Generative models

- GAN: Minmax game between :
- G: Generator of social plausible interactions
- D: Discriminator classifying real social interactions

- \Rightarrow Model Social constraints in G & D [1]
- \Rightarrow Tackle mode collapse G, catastrophic forgetting for G & D [2]

[1] Gupta *et al.*, CVPR'18[2] Yuejiang Liu & Parth Kothari, Collaborative Sampling in GAN, arxiv'19

From Prediction to Navigation

Socially-aware Trajectory Prediction

Social Force [1] Discrete Choice Model [2] Social-LSTM [3]

[1] Helbing, D., et al. 1995[2] Antonini, G., et al. 2006[3] Alahi, A., et al. 2016

Socially-aware Robot Navigation

Sequential approach [4] Interacting GPs [5] CADRL [6,7] Crowd-aware Robot Navigation LSTM-CADRL [8] Our recent work [9]

[4] Aoude, G. S., et al. 2013[5] Trautman, P., et al. 2010[6,7] Chen, Y., et al. 2017

[8] Everett, M., et al. 2018[9] Chen, C., et al. 2019

Crowd-Robot Interaction

- Jointly model Human-Robot as well as Human-Human interactions
- Aggregate interactions with a self-attention mechanism

Crowd-Robot Interaction

Experiments

[1] C. Chen et al., Crowd-Robot Interaction: Crowd-aware Robot Navigation with Attentionbased Deep Reinforcement Learning, ICRA'19

Thank you! Our lab members & sponsors:

Dr Sven Kreiss

George Adaimi,

Hossein Bahari,

Lorenzo Bertoni

Parth Kothari

Yuejiang Liu

Saeed Saadatnejad

Brian Sifringer

HITACHI RICHEMONT HONDA Schindler SAMSUNG

#Open Science

Perception: [1] S. Kreiss et al., Composite Fields for Human Pose Estimation, CVPR'19

Prediction:
[2] A. Gupta et al., Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks, CVPR'18
[3] Y. Liu, et al., Collaborative Sampling in Generative Adversarial Networks, arxiv'19

Planning: [4] C. Chen et al., Crowd-Robot Interaction: Crowd-aware Robot Navigation with Attentionbased Deep Reinforcement Learning, ICRA'19