

Prediction of Human Motion & Traffic Agents

Dinesh Manocha University of Maryland at College Park dm@cs.umd.edu

Collaborators

- Aniket Bera (UNC/UMD)
- Uttaran Bhattacharya (UMD)
- Rohit Chandra (UMD)
- Ernest Cheung (UMD)
- Kurt Gray (UNC)
- Sujeong Kim (UNC/SRI)
- Yuexin Ma (UNC/Baidu/HKU)
- Tanmay Randhavane (UNC)

Real-World Pedestrian/Crowd Analysis

- Behavior Learning
- Culture characteristics
- Crowd prediction

Analyze Crowd Movements

Driverless Cars: Pedestrian Interaction

Source: Oxbotica at Oxford University

Current AD technology vs. Real-world Scenarios

 Many traffic situations are still too challenging for autonomous vehicles

Current Autonomous Driving

Urban Traffic Condition: China

Challenging Traffic Conditions: China

Current technologies and datasets for dense traffic are limited

More Challenging Conditions: India

No respect for rules; cultural norms, driver & pedestrian behaviors

Organization

- Pedestrian and Crowd Motions
- Heterogeneous multi-agent simulation
- Tracking urban traffic & Prediction
- Driver behavior modeling

Organization

- Pedestrian and Crowd Motions
- Heterogeneous multi-agent simulation
- Tracking urban traffic & Prediction
- Driver behavior modeling

Pedestrian and Crowd Motion: Tracking & Prediction

- New motion models based on RVO (reciprocal velocity obstacles)
- Combine motion model with behavior models
- Real time tracking: deep learning + motion models
- Learning Pedestrian Dynamics using Bayesian Inferences
- Handling Dense Crowds

Realtime Pedestrian Tracking in Dense Crowds

[Chandra et al. 2019]

Q

REALTIME TRACKING AND PERSONALITY MODE

IVERSIT

[Bera et al. 2017]

Pedestrian/Crowd Movement Prediction

[Bera et al. 2016, 2017]

Realtime Pedestrian Behavior Learning for Path Prediction and Navigation

2017 PRESIDENTIAL INAUGURATION CROWD

[Bera et al. 2017]

Data Driven Crowd Simulation & Prediction

Original Video

ig)

Our data-driven simulation algorithm generates smooth trajectories

[Kim et al. 2017

STEP: Spatial Temporal Graph Convolutional Networks for Emotion Perception from Gaits

Input Walking Videos

Which is angry, sad, happy, neutral?

[Randhavane et al. 2019]

Which is angry, sad, happy, neutral? Forthcoming E-Walk Dataset

Organization

- Pedestrian and Crowd Motions
- Heterogeneous multi-agent simulation
- Tracking urban traffic & Prediction
- Driver behavior modeling

Dense traffic scenarios: Heterogeneous Agents

Vehicles (big and small), pedestrians, bicycles, tricycles, etc

Heterogeneous Multi-Agent Navigation

Agents:

- Varying shapes
- Varying dynamics
- Different behaviors
- Operating in tight spaces

Heterogeneous Multi-Agent Representation

Ma et al. "Efficient reciprocal collision avoidance between heterogeneous agents using CTMAT.", AAMAS 2018

Kinematic Models: Different Agents

Simple Car Model [Laumond et al. 1998]

AutoRVO: Preferred Steering Computation

Search for free-space for collision-free local navigation

AutoRVO: Results

AutoRVO: Local Navigation with Dynamic Constraints in Dense Heterogeneous Traffic

Yuexin Ma, Dinesh Manocha and Wenping Wang

Comparisons: Multi-Agent Navigation

Figure 6: Comparison of real trajectories of 50 continuous frames and simulated trajectories. (a)-(c) are three different moments from one video. (d)-(f) are three different moments from three different videos. Green lines indicate the real trajectories extracted from videos captured using a drone. Trajectories generated by AutoRVO, ORCA with CTMAT representation, and ORCA with disk representation are drawn in yellow, purple, and orange respectively. We observe higher accuracy with AutoRVO. Red points represent beginning reference positions.

Organization

- Pedestrian and Crowd Motions
- Heterogeneous multi-agent simulation
- Tracking urban traffic & Prediction
- Driver behavior modeling

- High degree of heterogeneity
- Dense Traffic
- No traffic protocols in place

Approach Combine model-based and learning-based methods

Stage 1 – Agent Detection Using Mask R-CNN

Use Mask R-CNN based agent detection to generate Segmented Boxes of each agent

Stage 2 – Velocity Prediction Using HTMI

Use HTMI to model inter-agent interactions and collision avoidance

HTMI: Heterogeneous motion model

Generate novel features called "Deep TA-features" from segmented boxes

Stage 4 – Feature Matching Using IOU Overlap

We use the cosine distance metric

Results – Low Density Traffic

Car: Green

Pedestrians & Two-Wheelers: Red

Rickshaws: Purple

Results – Medium Density

Car: Green

Pedestrians & Two-Wheelers: Red

Buses: Cyan

Results – High Density

Car: Green

Rickshaws: Purple

Pedestrians & Two-Wheelers: Red

Buses: Cyan

Animals: Yellow

Strengths – I We can track drivers inside different road agents

Strengths – II We can track atypical agents

Strengths – III We can track agents in challenging conditions

 Night time with a jittery, moving camera with low resolution. There is heavy glare from oncoming traffic. Dense Traffic Dataset We introduce a novel dataset of 45 high resolution videos consisting of dense, heterogeneous traffic.

We have carefully annotated the dataset following a strict protocol.

The videos are categorized by camera motion, camera viewpoint, time of the day, and difficulty level. Where to put your money in 2019 — it's not US stocks, according to Morgan Stanley (Emerging Economies)

https://www.cnbc.com/2018/11/26/stock-picks-morganstanley-upgrades-emerging-markets-downgrades-us.html Where to put your money in 2019 — it's not US stocks, according to Morgan Stanley (Emerging Economies)

Traffic Prediction

Dense

Heterogeneous

- Many agents (>3000) per Km of road length.
- Different types of road agents present simultaneously, e.g., pedestrians, twowheelers, three-wheelers, cars, buses, trucks etc.

Key Ideas

Traffic Prediction

TraPHic: Trajectory Prediction in Dense and Heterogeneous Traffic Using Weighted Interactions

Anonymous CVPR submission

Combining multi-agent navigation, deep learning & dynamics

Organization

- Pedestrian and Crowd Motions
- Heterogeneous multi-agent simulation
- Tracking urban traffic & Prediction
- Driver behavior modeling

Modeling Driver Behaviors

- Most traffic accident happens are caused by dangerous reckless drivers
- "Aggressiveness" and "Reckless" are subjective metrics
- Need navigation algorithms that can extract driving behaviors from sensors/trajectories and perform safe navigation (Behavior-based Navigation)

Aggressive Driving Behaviors

If you are driving, which driver will you pay attention to?

Identifying Driving behavior allows autonomous systems to:

Pay extra "attention"

Avoid getting close to them

Re-run perception algorithms at higher resolution for those area

Main contributions

Feature extraction from trajectories in real-time

Trajectory to driver behavior mapping

Improved real-time navigation; Integrated with Autonovi-Sim

[Cheung et al. 2018, CVPR; Cheung et al. 2018 IROS]

	Fea	ature & Behavio	ors
Trajectory			

Database

Trajectory Database

Fe	ature & Behavio	ors	TDBM	
	User Evaluation			

User Evaluation

Fe	ature & Behavio	ors	TDBM	Navigati
	User Evaluation	Feature Extraction		

Feature Extraction

Trajectory to Driver Behavior Mapping

Navigation improvements

Navigation improvements

Navigation improvements

Introduction	Feature & Behaviors	TDBM	Navigation
Conclusior	าร		

• Behavior modeling using feature extraction

Applied to highway traffic data

Safe and improved navigation

[Cheung et al. 2018, CVPR; Cheung et al. 2018 IROS]

Crowd and Traffic Motion

- New algorithms for tracking pedestrians & traffic agents
- Handle dense scenarios
- Use models from social psychology for behavior modeling
- Combine model-based and learning-based methods
- Applications to crowd scene analysis and autonomous driving

Acknowledgements

- Army Research Office
- Baidu
- DARPA
- Intel
- National Science Foundation

Questions: dm@cs.umd.edu