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Human Motion Prediction: Methods and Challenges
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PART 1:

A SURVEY ON HUMAN
MOTION TRAJECTORY
PREDICTION




Motion Trajectory Prediction: A Survey
Introduction

» Motion Trajectory Prediction: A Survey
» Authors: e
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With growing numbers of intelligent systems in human environments, the ability of such systems to perceive, understand
Kris M . Kitani’ C IVI U and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic

agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced
surveillance systems.
Dari u M Gav rila T U Delﬁ: This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection
¢ ’ of work from different communities and propose a taxonomy that categorizes existing approaches based on the motion
modeling approach and level of contextual information used. We provide an overview of the existing datasets and

Ka| O. Arras R BOSCh CO rpo rate ResearCh performance metrics. We discuss limitations of the state of the art and outline directions for further research.

vV v v v Yy

Keywords
Survey, motion prediction, robaotics, video surveillance, autonomous driving

P L AASS www.mrolab.eu

[

Long-term Human Motion Prediction Workshop ICRA 2019 | 2019-05-24 _‘“A = o

a_ a0 . P £ © BOSCH

%
MOBILE ROBOTICS & OLFACTION N
0 [ ®




Motion Trajectory Prediction: A Survey
Introduction

» Motivation:

» Bring structure to the growing body of work on predicting trajectories and better understand the key aspects of
the problem and outline the current state of the area

» Scope:
» Over 170 methods for predicting 2D motion trajectories of humans and vehicles

» Cross-disciplinary review of literature, datasets and benchmarking
— Mobile robotics
— Video surveillance
— Autonomous driving

» A new taxonomy of prediction methods

» Discussion of the state of the art along several research hypotheses
» Available on arXiv, soon to be submitted to a journal

AASS www.mrolab.eu

1
Long-term Human Motion Prediction Workshop ICRA 2019 | 2019-05-24 * :‘ M R&O o m o
a5 %, £ BOSCH

&
MOBILE ROBOTICS & OLFACTION N
20 R ®




Motion Trajectory Prediction: A Survey
General formulation of the prediction problem

» Future trajectory (or distribution over states) is a function of the observed environment

Truwre = [ (environment)

* Dynamics-based transition function e Current position of the agent
* Learning-based motion patterns « History of observations
e Planning-based optimal motion « Map of static obstacles

» Positions of other dynamic agents
e Various semantic cues of the environment
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Motion Trajectory Prediction: A Survey
Our taxonomy

» Every prediction method is discussed in two dimensions:
» What is the nature of the prediction function?
» Which contextual cues does it exploit?

Motion prediction
Modeling

/ \
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Contextual cue

. . Dynamic Static
Physics-based Pattern-based Planning-based Target agent cues snvironment cuss environment cues
/ / / Motion state Unaware Unaware + \
Single-model Non-sequential Forward planning
methods models methods Obstacle-aware \
Articulated pose Individual-aware
Map-aware
Multi-model Sequential Inverse planning Semantic
methods models methods attributes Group-aware Semantics-aware
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Motion Trajectory Prediction: A Survey
Our taxonomy

» Every prediction method is discussed in two dimensions:
» What is the nature of the prediction function?
» Which contextual cues does it exploit?

Motion prediction

\.

Modeling Contextual cue
approach
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Multi-model Sequential Inverse planning Semantic
methods models methods Group-aware Semantics-aware

attributes

/ P L AASSwww mrolab eu
orkshop ICRA 2019 | 2019-05-24 _" m
» . ) : @ BoscH

%-*.
3 MUB\LE RUBD’HCS & ULFACTlON
K o

Long-term Human Motion Pre

\30




Motion Trajectory Prediction: A Survey
1st classification criteria (motion modelling approach)

» Physics-based methods use a dynamics transition function to project the current state of the
agent
» Constant velocity, constant acceleration, constant curvature turn
» Attraction-repulsion approaches
» Reachability-based approaches

» Pattern-based approaches learn generalized transitions and trajectories from data
» Vector fields

» Clustering
» Distribution over full trajectories
» CNNs, RNNs, LSTMs
» Planning-based approaches assume a motion optimality criteria and predict optimal paths towards
estimated goal states
» MDPs, RRTs, A*, PRMs
» Inverse Reinforcement Learning
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Motion Trajectory Prediction: A Survey
1st classification criteria (motion modelling approach)
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Motion Trajectory Prediction: A Survey
Our taxonomy

» Every prediction method is discussed in two dimensions:
» What is the nature of the prediction function?

Motion prediction

» Which contextual cues does it exploit?
Modeling

approach
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Motion Trajectory Prediction: A Survey
2nd classification criteria (contextual cues of the environment)

» Static environment » Dynamic environment
» Unaware methods (a) » Unaware methods (a)
» Obstacle-aware methods (b) » Individual-aware methods (b)
» Map-aware methods (c) » Group-aware methods (c)

» Semantics-aware methods (d)

NO-GO ZONE
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Motion Trajectory Prediction: A Survey
Discussion

» Discussion is centered around 3 questions:
» Question 1: are all motion models equally good, in particular regarding contextual cues?
» Question 2: is motion prediction solved?
» Question 3: is benchmarking in good state?
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Motion Trajectory Prediction: A Survey
Benefits and drawbacks

» Physics-based methods:

>

Good for short-term
predictions

Simple to deploy
Fast and efficient inference

No or small amount of
training data needed

Natural handling of
prediction uncertainty

Generalization to new
environments

Hard to non-homogeneous,
complex motion dynamics

Long-term Human Motion Prediction Workshop ICRA 2019 | 2019-05-24

» Pattern-based methods

>
>

No or little modeling required

Can capture complex, non-
homogeneous dynamics

Capture all contextual cues
that are present in data

Fast inference

Require large amount of
training data

Limited generalization to
new environments

Limited social-awareness *

* Historically until LSTM-based methods

» Planning-based methods

» Naturally handle maps and
avoid local minima

» No or small amount of
training data needed

» Reasoning over actions and
goals

» Generalization to new
environments

» Planning could be time-
consuming
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Motion Trajectory Prediction: A Survey
Discussion

» Discussion is centered around 3 questions:

» Question 1: are all motion models equally good, in particular regarding contextual cues?
— There are powerful, context-aware predictors from each modeling approach
— ltis possible to extend all method classes with all both static and dynamic contextual cues
— Method classes have their inherent strengths and drawbacks

» Question 2: is motion prediction solved?

» Question 3: is benchmarking in good state?
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Motion Trajectory Prediction: A Survey
Discussion

» Discussion is centered around 3 questions:

» Question 1: are all motion models equally good, in particular regarding contextual cues?
— There are powerful, context-aware predictors from each modeling approach
— ltis possible to extend all method classes with all both static and dynamic contextual cues
— Method classes have their inherent strengths and drawbacks

» Question 2: is motion prediction solved?

— What are the requirements from the domains? (emergency breaking requirements: 1ISO 15622:2018 standard)
— Are considered semantic cues enough? (see Rasouli and Tsotsos, IEEE Transactions on Intelligent Transportation Systems 2019)
— How good is the transfer to new environments? (see Ballan et al., ECCV 2016, Srikanth et al., arXiv 2019)

— What the methods are really capable of? (see Schéller et al., arXiv 2019)

» Question 3: is benchmarking in good state?
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Motion Trajectory Prediction: A Survey
Discussion

» Discussion is centered around 3 questions:

» Question 1: are all motion models equally good, in particular regarding contextual cues?
— There are powerful, context-aware predictors from each modeling approach
— ltis possible to extend all method classes with all both static and dynamic contextual cues
— Method classes have their inherent strengths and drawbacks
» Question 2: is motion prediction solved?
— What are the requirements from the domains? (emergency breaking requirements: 1ISO 15622:2018 standard)
— Are considered semantic cues enough? (see Rasouli and Tsotsos, IEEE Transactions on Intelligent Transportation Systems 2019)
— How good is the transfer to new environments? (see Ballan et al., ECCV 2016, Srikanth et al., arXiv 2019)
— What the methods are really capable of? (see Schéller et al., arXiv 2019)
» Question 3: is benchmarking in good state?
— Condition precision on the observation period, prediction horizon and the complexity of the situation
— Robustness experiments
— Need for a prediction benchmark (see TrajNet: hitp://trajnet.stanford.edu))
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Highlights from our research
Overview

» Group-aware MDP-based predictor

» A. Rudenko, L. Palmieri, A. Lilienthal, K.O. Arras, ICRA Workshop 2017, ICRA 2018, IROS 2019
» Combination of

— Global map-aware MDP-based predictor
— Group-aware local interaction model by Moussaid et al. 2010
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Human Motion Prediction Under Social Grouping Constraints

Method

» Global optimal policy: MDPs

Value function V(s)

Mo

cost-to-go

P

Q' (s.a) =R(s.a)+y » P(s.5"a)V*(s))
V*(s) = maxQ*(s,a) h

Long-term Human Motion Prediction Workshop ICRA 2019 | 2019-05-24

AASS www.mrolab.eu

a':' MRRO : : @ soscu

* —&h —

&)
MOBILE ROBOTICS & OLFACTION N
20 R ®




Human Motion Prediction Under Social Grouping Constraints
Method

» Global optimal policy: MDPs » Stochastic policy sampling  » Interactions: group social
force (Moussaid et al. 2010)
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Human Motion Prediction Under Social Grouping Constraints

Method properties

» Correct speed handling

p(0,v)) in 7y, if v <! Cbs?

p0, 2v0bg —v)) in mg, if v > vo

p(a) in ffjg o {

bs

» Reasoning about goals

~
e

p(g) o exp(B(Vy(sii)—Va(sh))
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Human Motion Prediction Under Social Grouping Constraints
Method properties

» Correct speed handling » Multimodal predictions » Semantic map input
f\:‘) ? G.oal
: .
~ 4
@ ®! : .
Iy [
: | Road
_ : Sidewalk
p(a) in ffjg o p((gvy>)l n e lf v= V.ébs’ i @ Grass
p((9,2vobS —v)) in mg, if v > Vs
» Reasoning about goals e
60%1
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Human Motion Prediction Under Social Grouping Constraints
Method demonstration

» Accounting for social interactions which include groups
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Scenario
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Human Motion Prediction Under Social Grouping Constraints
Method demonstration

» Accounting for social interactions which include groups
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SEMANTIC OCCUPANCY
PRIORS IN URBAN
ENVIRONMENTS




Semantic occupancy priors in urban environments
Overview

» Contributors: A. Rudenko, J. Dollinger et al.

» Long-term reasoning about dynamic agents in urban
environment

» Estimating prior probability of observing a human in each
cell of the semantic map

» Based on the occupancy priors estimation method by Déllinger et al., “Predicting Occupancy Distributions of
. Walking Humans With CNNs”, RA-L 2018
Doellinger et al. RA-L 2018

» Reasonably shallow CNN which generalizes well with
small amounts of training examples

conv 1x1s1
max pool 2x2s2

I Max pool 2x2s2
)
ﬁ
.
I upcony 3x3s2
D,
U pconyv 3x3s2
)
/T conv 1x1sl1

— T__ output

I softmax

S ™

[ conv 1x1s1
[ conv 1x1s1

f— rq input
;
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Semantic occupancy priors in urban environments
Training data

» Simulated: 80 urban scenes with 4 semantic ' s P I x
classes, trajectories generated manually s = J

» Building
!B LR
d 1

» Road
» Grass

» Real: Stanford Drone Dataset, 25 scenes with
sufficient coverage, 9 semantic classes

» Road » Building

» Pedestrian zone » Obstacle

» Grass » Bicycle parking _

> Tree foliage Scenes from the Stanford Drone Dataset, www.cvgl.stanford.edu/projects/uav data/
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http://www.cvgl.stanford.edu/projects/uav_data/

Semantic occupancy priors in urban environments
Results: Stanford Drone Dataset

Semantic map Occupancy prediction Real trajectories distribution
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Semantic occupancy priors in urban environments
Results: simulated maps

Semantic map Occupancy prediction Real trajectories distribution Semantic map Occupancy prediction Real trajectories distribution

» Non-uniform probabilities for states of the same semantic class
» Prediction for each cell based on the global topology of the environment
» Use-case: predicting “illegal crossroads” — places where people might cross the road
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A NEW DATASET OF
INDOOR HUMAN
TRAJECTORIES




A new dataset of indoor human trajectories
Overview

» Contributors: A. Rudenko, T. Kucner, A. Lilienthal et al.

» Motivation and key features of the dataset:
» Controlled indoor experiment in a large open-space environment
» Experiment and instruction designed to ensure natural walking patterns
» People moving alone and in groups with various velocities between several goal positions
» Long trajectories, avoiding both static and dynamic obstacles
» Robot navigating along the humans
» Precise ground truth position estimation with the motion capture system
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A new dataset of indoor human trajectories
Experiment design and recording

< 18.8 m (18 seconds with slow speed, 11 seconds with high speed) >

» Details: Goal 3

» 9 participants: 2 carrying boxes, 6
walking between goals, 1 walking off-
patterns

» 4 participants were wearing eye-
tracking glasses

» Recording: 84m

— Qualysis motion capture MATLAB file
— ROS stream of detection events

— RGB and Velodyne recordings from
stationary sensors

» Experiment 1: stationary robot /
» Experiment 2: moving robot Goal 1

<« — — » Irajectory of the robot
» Experiment 3: stationary robot, three Trajectory of box-

obstacles carrying workers
Motion patterns of the
white-collar workers

> Total 39-52 minutes of motion

recorded
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A new dataset of indoor human trajectories
Experiment setup
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A new dataset of indoor human trajectories
Collected data

Experiment 1,
Stationary robot,
1 obstacle

Experiment 3,
Stationary robot,
3 obstacles

Goal 4 A~ V2
, W/ Goal 4 *=
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