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“The best way to predict the future is to create it.”




Dynamic Motion Control




DEEP RL RESULTS
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PILQR-MDGPS;
Neural netwonk

[Mnih et al. 2015] [Schulman et al. 2016] [Chebotar et al. 2017]




REINFORCEMENT LEARNING
FOR LOCOMOTION CONTROL

In principle:
* specify rewards
* “train” using RL algorithm

env state H
max E[)  R(sq)|mg]
t=0

Environment
physics simulation



MOTION QUALITY

Humanoid:
27 DoFs, 21 Actuators.
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[Schulman et al. 2016] [Heess et al. 2017]
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IN PRACTICE

initial states
noise amplitude
network structure structure, batch size
torque limits, step-size control
friction, early termination

learning iterations

how to specify rewards?
inefficient?

local minima?

poor motion quality?
sim2real?

reproducible?

state 0 control dt
description

r reward

Environment
physics simulation | simulation dt



OVERVIEW

pure objective

vision

video

animation

torque-based
simulated skill

robotics
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biomechanics

robot
skill

3D motion

muscle-based
simulated skill




MOTION IMITATION
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STATE + ACTION

State: 197 D
« link positions %
* link velocities

Action: 36D

* PD targets
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WALKING [Deeploco: SIGGRAPH 2017]




[DeeplLoco: SIGGRAPH 2017]

Walking on Conveyor Belts
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Forward Lean




STATE + ACTION

State: 197 D
« link positions %
* link velocities

Action: 36D

* PD targets
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NO REFERENCE
MOTION




HUMANOID: RUN




HUMANOID: BACKFLIP

Simulation Reference
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LOCAL MINIMA

Simulation Reference
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WITH REFERENCE STATE INITIALIZATION

Simulation Reference




MULI-CLIP INTEGRATION

Left Cartwheel
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HUMANOID: BALANCE
BEAM




HUMANOID: RUN —
DENSE GAPS




CHARACTER
RETARGETING

Reference Motion Atlas
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ATLAS: SPINKICK




ATLAS: GETUP-
FACEDOWN
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SIMULATED LION
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Ziva Dynamics

7 VA







DEEPLOCO: HIERARCHICAL RL

task [SIGGRAPH 2017]
lreward
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Dynamic Obstacles

SO —




HLC

Soccer Dribbling




SKILLS FROM VIDEO:

REINFORCEMENT LEARNING OF PHYSICAL SKILLS
FROM VIDEO

: : _ [SIGGRAPH ASIA 2018]
Transactions on Graphics (Proc. ACM SIGGRAPH Asia 2018)

Xue Bin Peng Angjoo Kanazawa Jitendra Malik Pieter Abbeel Sergey Levine
University of California, Berkeley
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Character

Poses

Pose ] N [> Motion
Estimation LA Reconstruction

0

Reference Motion

Motion

Imitation

(RL)




SKILLS FROM VIDEOS

Video Simulation
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SKILLS FROM VIDEOS
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Video Simulation
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Retargeting

and retarget to different environments.



Character Retargeting
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Video: Jump Policy




MOTION COMPLETION

Environment Retargeting




FEEDBACK CONTROL FOR CASSIE WITH
DEEP REINFORCEMENT LEARNING

Robot > 5
a a
T PD Control
Reference Motion
l




WALK AND STUMBLE
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BACKWARDS WALK




SIDE-STEPS
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SMOOTH STYLE
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HIGH-STEPPING




PERTURBATION TEST

Perturbation Test




DEEP-MIMIC FOR
BIOMECHANICAL MODELS

Scalable Muscle-Actuated Human Simulation and Control

SIGGRAPH 2019 Conditional Accept, Seoul National University




Scalable Muscle-Actuated
Human Simulation and Control




OVERVIEW

pure objective
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robotics

/7‘
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MUCH TO BE DONE...

» multi-skilled digital humans & animals
- richer perception
— interaction with the world
— collaborative & interacting characters

 behavior from video
* motion planning



CONCLUSIONS

* “the best way to predict the future is to create it”

* physics-based human movement:
rapid advances, many uses
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Questions?




