(LEARNED) PHYSICS-BASED HUMAN MOVEMENT: SHARED MODELS FOR ANIMATION, ROBOTICS, VISION, AND BIOMECHANICS

Michiel van de Panne

Dept of Computer Science University of British Columbia

"The best way to predict the future is to create it."

Dynamic Motion Control

DEEP RL RESULTS

[Mnih et al. 2015]

[Schulman et al. 2016]

[Chebotar et al. 2017]

REINFORCEMENT LEARNING FOR LOCOMOTION CONTROL

In principle:

- specify rewards
- "train" using RL algorithm

$$\max_{\theta} \quad \mathbf{E}[\sum_{t=0}^{H} R(s_t) | \pi_{\theta}]$$

MOTION QUALITY

[Schulman et al. 2016]

[Heess et al. 2017]

© 2018 SIGGRAPH. All Rights Reserved

IN PRACTICE

structure, torque limits, friction,

. . .

initial states noise amplitude batch size step-size control early termination learning iterations

how to specify rewards?

. . .

- inefficient?
- local minima?
- poor motion quality?
- sim2real?
- reproducible?

OVERVIEW

STATE + ACTION

State: 197 D

- link positions
- link velocities

• PD targets

WALKING

[DeepLoco: SIGGRAPH 2017]

[DeepLoco: SIGGRAPH 2017] Walking on Conveyor Belts

STATE + ACTION

State: 197 D

- link positions
- link velocities

• PD targets

NO REFERENCE MOTION

HUMANOID: RUN

HUMANOID: BACKFLIP

LOCAL MINIMA

WITH REFERENCE STATE INITIALIZATION

MULI-CLIP INTEGRATION

Left Cartwheel

HUMANOID: BALANCE BEAM

HUMANOID: RUN – DENSE GAPS

CHARACTER RETARGETING

Reference Motion

ATLAS: SPINKICK

ATLAS: GETUP-FACEDOWN

© 2018 SIGGRAPH. All Rights Reserved

SIMULATED LION

DEEPLOCO: HIERARCHICAL RL

Dynamic Obstacles

HLC

Soccer Dribbling

SKILLS FROM VIDEO: REINFORCEMENT LEARNING OF PHYSICAL SKILLS FROM VIDEO

Transactions on Graphics (Proc. ACM SIGGRAPH Asia 2018)

[SIGGRAPH ASIA 2018]

Xue Bin Peng

Angjoo Kanazawa Jitendra Malik Pieter Abbeel University of California, Berkeley

Sergey Levine

SKILLS FROM VIDEOS

Video

Simulation

© 2018 SIGGRAPH. All Rights Reserved

SKILLS FROM VIDEOS

Video

Simulation

© 2018 SIGGRAPH. All Rights Reserved

Character Retargeting

Video: Jump

Policy

MOTION COMPLETION

FEEDBACK CONTROL FOR CASSIE WITH DEEP REINFORCEMENT LEARNING

WALK AND STUMBLE

BACKWARDS WALK

SIDE-STEPS

SMOOTH STYLE

HIGH-STEPPING

PERTURBATION TEST

Perturbation Test

DEEP-MIMIC FOR BIOMECHANICAL MODELS

Scalable Muscle-Actuated Human Simulation and Control

SIGGRAPH 2019 Conditional Accept, Seoul National University

Scalable Muscle-Actuated Human Simulation and Control

OVERVIEW

MUCH TO BE DONE...

- multi-skilled digital humans & animals
 - richer perception
 - interaction with the world
 - collaborative & interacting characters
- behavior from video
- motion planning

CONCLUSIONS

- "the best way to predict the future is to create it"
- physics-based human movement: rapid advances, many uses

ACKNOWLEDGEMENTS

Xue Bin Peng, Glen Berseth, Xinyi Zhang, Zhaoming Xie, Patrick Clary, Jonathan Hurst, Pieter Abbeel, Sergey Levine, Kangkang Yin, Hung Yu Ling

University of British Columbia UC Berkeley Oregon State University Agility Robotics

Questions?

